Understanding High-Dimensional Spaces

My new book with the title above has been published by Springer, just in time for Christmas gift giving for the data miner on your list.

The book explores how to represent high-dimensional data (which almost all data is), and how to understand the models, particularly for problems where the goal is to find the most interesting subset of the records. “Interesting”, of course, means different things in different settings; a big part of the focus is on finding outliers and anomalies.

Partly the book is a reaction to the often unwitting assumption that clouds of data can be understood as if they had a single centre — for example, much of the work on social networks.

The most important technical ideas are (a) that clusters themselves need to be understood as having a structure which provides each one with a higher-level context that is usually important to make sense of them, and (b) that the empty space between clusters also provides information that can help to understand the non-empty-space.

You can buy the book here.

Advertisements

0 Responses to “Understanding High-Dimensional Spaces”



  1. Leave a Comment

Leave a Reply

Please log in using one of these methods to post your comment:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s





%d bloggers like this: